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The derivation is similar to that of equation (21) Equation (A2) is obtained in the same way as 
of Becker & Dunstetter (1984). equation (23) of Becker & Dunstetter (1984). 

Configuration III 

The geometry of configuration II is shown in Fig. 
18 with b = Snl.  One obtains: 
for M1 in domain 1 

D~h = iXJo[2X(xy)l/2]; 

for Ms in domain 2, 

D2h(X, y) = D~h(X, y ) - -  ix 

XJo[2X{(x-b)[y+( f lo / f lh)b]}I /2] .  (A2) 
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Abstract 

Kato's statistical theory of diffraction [Kato (1980). 
Acta Cryst. A36, 763-769, 770-778] is reformulated 
in a self-consistent manner. The local displacement 
field u(r) occurs through the phase factor ~o(r)= 
exp [2zrib. u(r)]. The present paper is concerned with 
the limiting case where (q~(r))=E =0: this corre- 
sponds to the situation where only secondary extinc- 
tion is present. There are two correlation lengths in 
the problem, the first one z for the phase factor ~o, 
the second one F for the wave-field amplitudes. Kato 
assumed F >> r. It is shown in the present paper that 
F = r, a property which has important consequences 
for the general theory, where E ¢ 0, to be discussed 
in the second paper of this series. 

I. Introduction 

Kato (1980a) has proposed a statistical theory that 
describes the propagation of X-rays and neutrons in 
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a distorted crystal. This theory covers the whole range 
of perfection from purely dynamical (perfect crystal) 
to purely kinematical (mosaic crystal) diffraction. It 
thus fills the gap between secondary and primary 
extinction that were treated independently in previous 
approaches. 

The application of this theory has been discussed 
by Kato (1980b) and an improved solution was 
recently proposed by the authors (A1 Haddad & 
Becker, 1988) that led to a fair description of experi- 
mental data on silicon (Olekhnovich, Karpei, 
Olekhnovich & Puzenkova, 1983). This modification 
was confirmed by Guigay (1989). 

The theory involves long-range- and short-range- 
order parameters. The effective short-range correla- 
tion length introduced by Kato has been questioned 
in the literature (Olekhnovich et aI., 1983) and relies 
on non-trivial assumptions. 

In this series of papers, we intend to discuss the 
statistical hypothesis in detail, and to propose an 
improved self-consistent formulation of the problem. 
In order to discuss separately the various approxima- 
tions, we shall start in the present paper by the par- 
ticular case where long-range order is negligible 
(secondary extinction only). The general theory will 
be presented in a second paper, together with a prac- 
tical solution. 
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124 DIFFRACTION BY A RANDOMLY DISTORTED CRYSTAL. I 

II. Takagi's equations and the statistical hypothesis 

For simplicity, we shall consider a non-absorbing and 
centrosymmetric crystal. 

A. Let So be a coordinate along the direction of 
the incident beam. Let us assume Bragg scattering to 
occur at the reciprocal-lattice point h. We denote the 
coordinate along the scattered direction by Sh. If Do 
and Dh a r e  the amplitudes of the waves in the incident 
and scattered directions respectively, their propaga- 
tion obeys Takagi's equations: 

ODo_ ixq~Dh ' ODh-- ixq~*Do, (1) 
OSo OSh 

where 

X=(AaC/V)F=I/A.  (2) 

F is the structure factor for the Bragg reflection h, 
supposed here to be real (centrosymmetric crystal). 
A is the wavelength, V the volume of the unit cell, a 
equals 1 pm for neutrons, 0.28 pm for X-rays. A is 
the 'extinction length', the distance above which 
multiple scattering (dynamical effects) becomes 
important, C = polarization factor for X-rays. 

~o is a phase shift which accounts for the local 
displacement from perfection. If u(r) is the displace- 
ment field in the crystal: 

=exp [27rih. u(r)]. (3) 

The situation is depicted in Fig. 1. We assume a 
crystal to be totally illuminated by an incident beam. 
A typical optical route is shown in this figure; the 
beam enters the crystal at S and exits at M. The 
amplitude at M will depend on the phases ~i at the 
points mi where scattering has occurred. 

The practical solution of (1) is impossible in the 
general case, even if u(r) is known at each point. In 
most situations, the displacement field u(r) is 
unknown and some assumptions have to be formu- 
lated before (1) can be solved. 

~0 
2 ' " "  .. 

' " . . . .  

m3 . . . .  
... 

ma ' 1 .  

' " , 1 .  

Fig. 1. Schematic representation of the scattering processes. 
incident beam; . . . .  scattered beam; ~ a typical optical path 
through the crystal. 0: Bragg angle. 

Equations (1) have been proved by Takagi (1962, 
1969) and Taupin (1964) and reformulated by Kato 
(1973). 

They can be viewed as very general propagation 
equations for waves in the presence of a scattering 
potential. X is the amplitude of the scattering process, 
and q~ a local phase shift that will be considered as 
a random quantity. 

B. Given a crystal, it is possible to analyse the 
displacement field u in terms of its probability distri- 
bution function P(u) (Becket & A1 Haddad, 1989). 

It is possible to consider ~o as a random variable. 
Kato introduced the quantity 

E = (~o(r))r = ~ ~0(r) dr, (4) 
D 

where v is the volume of the crystal, which can also 
be written as 

E = ~  P(u) exp (2~rih. u) du. (5) 

E is the long-range-order parameter of the problem. 
It is equivalent to a static Debye-Waller factor. It is 
reasonable to assume a Gaussian distribution for P(u) 
if the displacements are random enough. Assuming 
an isotropic distribution, one gets 

E = exp [ - (2 7r2/3)h2(u2)], (6) 

where Cu E) is the mean square displacement over the 
crystal under study. Equation (6) also shows the 
dependence of E on the Bragg angle []h I = 2(sin 0)/A 
where 20 is the scattering angle]. For a perfect crystal, 
E = I .  

If (u2) ~/2 becomes larger than the reticular plane 
interspacing d -- l/h, E becomes very small and will 
often be neglected. The limit E-~ 0 corresponds to 
the purely 'mosaic' crystal. 

Kato also introduced a short-range-order param- 
eter through the pair-correlation function: 

f(t)  = (~o*(r+ t)~o (r))r. (7) 

This function is assumed to be real and symmetric. 
If we write 

= E + ~o ,  (8)  

where 6~0 is the phase fluctuation, we get 

f ( t )  = E 2 + (6~o*(r+t)6~o(r))r. 

Since f ( 0 ) =  1, 

f ( t )  = E 2 + (1 - E2)g(t), (9) 

where g(0) = 1 and g(t) is a decreasing function that 
describes the phase correlation between two points 
separated by the vector t. 

We are interested in the solution of (1) in the case 
where u(r) has a known distribution. The statistical 
hypothesis is thus introduced at this particular stage: 
the diffracted power does not depend on the details 
of the displacement field {u(r)}. 
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One may expect that there exist many hypothetical 
crystals with different displacement fields {u~}...{up} 
but having the same diffraction spectrum. These crys- 
tals must have the same distribution function p(u) 
and the same correlation function g(t). 

If such an assumption is valid, it becomes possible 
to describe the intensities of the incident and diffrac- 
ted beams as an ensemble average over all the crystals 
that would give the same diffraction spectrum: this 
would also correspond to studying the scattering by 
a homogeneously distorted crystal defined as an 
average among crystal 1, crystal 2 , . . . ,  crystal p. 

It is obvious that one of the conditions to be fulfilled 
is that the actual dimension l of the sample be large 
compared to any characteristic length, such as A or r, 

l>>'r, l>> A. (10) 

Write the intensities in the incident and diffracted 
directions as 

lo=<lDo12>, Ih =<lDhl2>, (11) 

the brackets having the meaning of an ensemble 
average. 

If the phase sequence along an optical route such 
as shown in Fig. 1 can be approximated by a Markov 
chain, and if t = XUo+yUh (where Uo and Uh are the 
unit vectors along the incident and diffracted beams), 
one can show (Becker & Al Haddad, 1989) that 

g(t) = exp ( - a .  t). (12a) 

If, moreover, the incident and diffracted directions 
are supposed to be equivalent for the correlation 

we note that 

g( t )=exp[ - (x+y) / r ] ,  (12b) 

g(x,y)=g(x)g(y) 

g(O,y)=g(y), (12c) 

g(x,O)=g(x). 

Correlation lengths r,  are defined as 

oo 

r,, = ~ [g(t)]" dt, rl = r. (13) 
0 

r measures the width of the pair-correlation function 
g, and represents the distance over which two routes 
lose their mutual phase coherence. 

Higher-order correlation functions can be intro- 
duced but the present theory will only take pair corre- 
lation into consideration. The implications of such a 
constraint will be discussed later. 

C. In the present paper, we shall restrict the dis- 
cussion to the case where E is very small, thus neglect- 
ing long-range order. We shall use the following 
simplifications: 

( ~ ) = 0  
(14) 

(~*(r + t )~p(r))=f( t )= g(t). 

The second paper of this series will deal with the 
general case (Becker & Al Haddad, 1990). 

Before solving (1) under the conditions (14), we 
shall make a further assumption concerning the scat- 
tering geometry and boundary conditions for the 
beams. This is summarized in Fig. 2. 

Let S be a point illuminated on the crystal surface. 
S can be considered as a point source, emitting a 
spherical wave. Suppose the diffracted beam exits at 
M. Let 

Sin=So, mM = Sh. 

We suppose that the parallelogram (StuMp) is totally 
inside the crystal (transmission geometry). 

This approximation has been shown to be fair in 
many situations (Becker & Coppens, 1974; Becker & 
Dunstetter, 1984), especially for small scattering 
angles (the most important situations for multiple 
scattering). We assume a unit intensity for the incident 
beam, which leads to the boundary condition. 

D°=6(Sh). (15) 

One calculates the solution for this point source 
(Green function of the problem). It is then necessary 
to integrate over the exit surface from the crystal, and 
over all the source points, in order to get the integrated 
diffracted power that is recorded in an experiment. 
The integrated diffracted power for a homogeneous 
incident beam is shown to be (Kato, 1976; Becker, 
1977): 

P=(h/sin20)  ~ Ih(m) dv, (16) 
1) 

where Ih(rn) is the intensity of the diffracted beam 
at M originating from the source S: notice that any 
point m inside the crystal defines uniquely the pair 
(S, M). 

III. Propagation equations for the intensities 

Takagi's equations can be transformed into integral 
equations, as proposed by Kato: 

$h 

Dh(So, Sh)= ix ~ ¢P*(So, r/)Do(so, r/) dr/ (17a) 
0 

So 

Do(So, Sh)=~(Sh)-I-ix ~ ~(~,Sh)Dh(~,Sh)d ~. (17b) 
o 

x x~'xx 

P /  
0 

Fig. 2. Assumed geometry for the diffraction. 
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It is easy to write the propagation equations for Io 
o r  Ih: 

0Io=_0Ih= ix{(D*o~pOh)-(O*h~O*Oo)}. (18) 
OSo OSh 

Equation (18) correlates Do and Dh at the same 
point. In order to estimate this quantity, we must take 
into account the fact that the actual values of Do and 
Dh at a given point are defined by the scattering events 
which have occurred at preceding points: this is 
achieved with (17). The situation is schematized in 
the following diagram where horizontal lines refer to 
the diffracted direction and vertical lines to the 
incident direction: the two routes join at (So, Sh) and 
correspond to the evaluation of Do*(So, Sh)Dh(So, Sh). 

D o 

D h . . . . .  ~ . . . . . . . . . . . . . .  

(~,sh) 

+ Do 

So. q )  Dh ( s o . s h ) 

Let us consider the term (D*oq~Dh). Through (17a), 
one creates a correlation between D*o(So, Sh) and 
Do(so, 77). Through (17b), one gets a correlation 
between Dh(So, Sh) and D*(~, Sh). Since these two 
correlations'are independent, one must add the two 
processes. The term 6(Sh) in (17b) does not corre- 
spond to a scattering event and can be discarded. We 
get 

$0 

0Io_ P 

X 2 / d~:(Dh*(~, Sh)Dh(So, Sh) 
OSo d 

o 

x ~*(¢, sh)~(So, sh))+  c.c. 

$h P 

-X2 I dr/(D*o(So, Sh)Do(so, 77) 
o 

X @*(So, r/)@(So, Sh))+ C.C. (19) 

Assuming the brackets to be real, we get 

OI°- -OIh= 2x2[ B ' -  A' ] (20) 
OSo OSh 

with 
Sh 

A ' =  ~ dr/(D*(so, Sh)Do(so, r/)~o*(So, r/)q~(So, Sh)) 
o (21) 
SO 

B'= J d~(Dh(So, Sh)D*(~, Sh)~O*(~, Sh)~O(So, Sh)). 
o 

A' and B' can be represented by the following 
diagrams: 

t ~ .  % )  

'i' ? 
I 

A'  = [ B' = & 
k > 

( s 0, q ) ( % .  s ,  ) ( so, sh ) 

where  • : q~ O : cO" 

It should be recalled that Do or Dh only change 
their value at a scattering point. Do*(So, Sh)Do(So, r/) 
is defined by scattering events taking place earlier on 
the routes, for example: 

I 

I 

I 
,t 

We wish now to evaluate (21). We will restrict the 
discussion to the pair-correlation assumption. There- 
fore (Feller, 1970), the average of the product of an 
even number of random quantities, each of which 
has a zero mean value, can be written as the sum of 
all the independent products of pair correlations. 
Take (alaEaaa4). It can be written, in the pair-correla- 
tion approximation: 

( al azasa4) = ( a, a2)(a3a4) + ( a, as)(a2a4) 

+ ( a, a4)(a2a3). (22) 

If (ai)= 0, this expression is exact when the random 
variables ai have a Gaussian multivariate distribution. 

Furthermore, (17) can be used iteratively and leads 
to 

D h ( S o .  Sh) = ixq~*(So, 0)+ £ D h .  

where 

s o s h 

f_,f=-x 2 j" d~: I dr/q~*(So, r/)tp(s ¢, r/)f(~, r/). (23) 
o o 

From this, we get 
oo 

(Dh)=~ (-l)"(l-,"[ix(P*(So, 0)]) 
0 

oO SO Sh 

=~, (-1)nix(-x2) n ~ d~ ~ d*h...  
0 0 o 

~n--I "r/n- 1 

x ~ dE,, ~ dr/,(~o*(So, r/,)~P(~l, r / l ) - . .  
o o 

x ~*(¢._,,  r / . )~ (~ ,  r/.)~*(~:~, 0)). 

The bracket involves the average of a product of 
an odd number of quantities whose mean value 
is zero. If the displacement field is such that 
ft. u ( r 0 . . ,  h .  u(r , )  has approximately a multivariate 
Gaussian distribution (Feller, 1970; Becker & A1 
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Haddad, 1989), each term in the preceding expansion 
is zero and we conclude that 

(Dh) = 0. (24a) 

Similarly, if we consider only the part of the incident 
beam which corresponds to multiple scattering, 

(Do) = 0. (24b) 

There is a total lost of phase coherence along a 
given route. As a result, the only contribution to the 
intensity must come from the correlation between 
different routes originating from S and joining at 
(So, Sh). That is equivalent to saying that the only 
non-vanishing terms in (21) are 

(Do*(So, Sh)Do(So, r/))(~o*(So, r/)cP(So, Sh)) 

and 

(Dh(So, Sh)D*(s e, Sh))(~0*(~:, Sh)~O(So, Sh)). 

The term (D*o(So, Sh)~O(So, Sh))(Do(So, r/)~0*(So, r/)) 
is zero since each bracket is proportional to a(D*h)/aSh 
and a(Dh)/arl: remember that (Dh)=0. The term 
(D*(so, Sh)~O*(So, rl))(Do(so, rl)~O(So, Sh)) would, by 
the use of (17), involve non-first-neighbour phase 
correlation, which is neglected in the present 
approach. Thus, phase and amplitude couplings can 
be separated, and one gets 

Sh 

A t= ~ dTlg(sh-rl)(O*o(So, Sh)Do(so, 71)) 
o 
So (25) 

B ' =  ~ dsCg(so- ¢)(Dh(So, Sh)D*h(¢, Sh)). 
o 

The diagrammatic version of (25) is 

010 2;( .2 + 2 % 2  _ _  = _ 

0% 

where ~ stands for a phase correlation 

and 1"4-----~ I stands for a transverse amplitude con'elation. 

a. Kato' s approximation 

To estimate A' and B', Kato made the assumption 
• that the transverse correlation length (F) of the 
amplitude is much larger than r, the phase corre- 
lation length. F is the distance over which 
(Do*(So, Sh)Do(so, Sh--F) becomes negligible. Then 
(D*o(So, Sh)Do(so,~7)) can thus be replaced by 
Io(so, Sh) in (25). This leads to a very simple solution: 

A ' =  rio(so, Sh), B'= TIh(So, Sh). (26) 

Thus, the propagation equations take the simple 
form: 

O l o / O S o =  --cglh/cgSh --" 2X27"[ I h - -  Io],  (27) 

which is familiar in secondary-extinction theories 
(Zachariasen, 1967; Becker & Coppens, 1974), where 
the quantity (2X27 ") plays the role of a specific scatter- 
ing cross section. 

Earlier, Kato (1976) proposed a theory for secon- 
dary extinction, based on a detailed study of all the 
possible coupling schemes between two optical 
routes. This theory, precise but quite complicated, 
cannot be generalized if E # 0. It leads to 

Mo/aSo= --alh/aSh = 2g2r2[ Ih-- Io]. (28) 

The only difference from (27) is the occurrence of 
rE instead of r and seems minor. 

In fact, we shall see that it is related to the approxi- 
mation leading to (26), which has to be critically 
discussed. The difference between (27) and (28) will 
be shown to be quite fundamental in terms of the 
physics background. 

b. Self-consistent approach 

We must consider A' and B' without making any 
a priori approximation. If we wish to calculate them 
directly, this will involve quantities such as 
(D*o(So, Sh)Do(so, r/)), which has to be expanded 
in terms of preceding scattering events. We must 
therefore consider an expansion of dlo/dSo at least to 
order X 4. 

~ S 0 

Sh 

~Io ~ .. . . .  Q - %n 
"ff~o - 2~¢4 - 9  

4 
+2% 

4 
- 2 %  

" ' - ~  . . . .  O 

6 .. . . . . .  Q 
.1 

= 2x ' [X ,  + x2 + x3 + x4]. (29) 

In evaluating Xi, we will again separate phase and 
amplitude correlations, following arguments leading 
to (22). Taking into account all the pair correlations, 
we get 

t = + 
XI = 2 

s h s o s h 

X1 = [. drl ~ dr' [. drl'{g(sh--rl)g(sh--rl' ) 
o o o 

+ g(So- ¢')g(So- f', r l -  r/')} 

x (Do(so, rl)D*o(f', rl')). (30) 
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We shall use two more approximations: 
(1) it is shown in the Appendix that 

(Do(so, r/)Do*(s ~', rl')) can be replaced by 
(Do(~', r/)Do*(~', rl')) (long longitudinal amplitude 
correlation); 

(2) if x, y > 0, 

g(x + y)~-- g (x )g (y )  (31) 

(Becker & A1 Haddad, 1989). 
s h s o rl 

X1=2 ~ gE(sh-r / )dr /  ~ d~'~ dr/' g ( r / -  r/') 
o o o 

x (Do(~", r/)Do*(~", r/')) 
s 0 s h rl 

+2 ~ ds c' g2(so- so') ~ dr/~ dr/' g ( r / -  r/') 
0 0 0 

x (Do(sO', r/)Do*(~", r/')) 
$0 Sh 

=27"2~ dCA'(~,Sh)+2r2~ dr/A'(so, r/), (32) 
0 0 

where use was made of the fact that A' has slow 
variations on a distance of order 7". 

By similar arguments: 

$o Sh 

= - 2 r 2  ~ d~B ' (~ ,Sh) -2r2  ~ d~B'(so,  r/). (33) 
0 0 

We then consider X3. We notice that the former 
scattering events occur on the same optical route and 
correlations between adjacent pairs cannot be fac- 
tored out. 

(~,(So, s,,),p*(So, n)~(~', n),p*(~', n')) 
= g(sh -- rl)g( r~ - 7 1 ' ) G ( s o -  ~'), 

where G ( s o -  ~') correlates the two horizontal pairs 
on a distance of order 7-: 

as a consequence, X3/X~ = r/So. Xa can be neglected. 
Similarly X4 is neglected. 

Finally, we get 
$0 

OSo 
0 

Sh 

0 

From (20), this can be transformed into 
S O S h [ i o , o  io, OXo 2x~7"~ _ - - ( ~ ' , s h ) d E +  re (So ,  n) 

OSo OSo OSh 
0 0 

---- 2X2r2[ Ih -- Io] 

and 

OIh -- 2X2Z2[ Io-- Ih]. (35) 
OSh 

The correlation length z2 is retrieved and we find 
agreement with Kato's (1976) theory. 

The previous results can be written as 

A ' =  7"21o, B'= 7"2Ih, (36) 

as can be seen by an expansion of (22): 

2 2 
A' = - 2 X  + 2X 

B' = - 2 ; (  + 2 Z  . . . . . .  

(37) 

Equation (36) shows that the transverse amplitude 
correlation length F is of the same order as the phase 
correlation length 7-, a result which differs significantly 
from Kato's predictions. 

This difference will also have a strong influence on 
the theory when there is long-range order (E ~ 0). 

IV. Solution 

The solution of (28) or (35) is well known (Becker, 
1977; Kato, 1976, 1980b): it depends on the boundary 
values for Io and Ih. 

A simple use of (15) and (17) would lead to 

Io(e, sh)"-O, Ih(So, e ) ~ X  2 (38) 

for e ,~ So, Sh but e >> 7-. Equations (38) are the effective 
boundary conditions for kinematical theory (single 
scattering). 

However, this single scattering can occur at any 
x < So: the incident beam at So is thus reduced by an 
effective absorption factor exp(-2X27-2So). The 
effective boundary values have to be taken as (A1 
Haddad & Becker, 1988): 

lo(e, Sh)--O, Ih(So, e ) - - X  2 exp (-2X27-2So). (39) 

The solution is then 

Io(So, sh) = x2(so/  sh) ~/2 

x 11[2Or(SoSh) 1/2] exp I-or(So+ Sh) ] 

Ih ( So, Sh ) = X2lo[ 2or( SoSh ) 1/2] e x p [ - - o r ( S o +  Sh ) ], 

(40) 
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where 

Or = 2X2T2 (41) 

is the specific scattering cross section and Io, I1 stand 
for modified Bessel functions of the first kind. 

The kinematical diffracted power (16) is 

Pk = (A/sin 20)X2V. (42) 

The measured power is 

P= PkY, (43) 

where y is the extinction factor. We get 

Y = V  -1 ~ exp[--Or(So+Sh)] lo[20"(SoSh) l /2]dv ,  (44) 
1) 

an expression of great use in secondary-extinction 
theory. 

V. Concluding remarks 

We have shown, in the case of negligible long-range 
order, that the correlation functions for the ampli- 
tudes in the transverse direction can be calculated 
without any a priori approximation. The correlation 
length of the amplitudes is of the same order as the 
correlation length for the phase, a result which is 
consistent with the detailed calculation of Kato 
(1976), but which discards Kato's (1980a, b) assump- 
tions concerning the general statistical theory. This 
result is important for the general theory to be presen- 
ted in a following paper. 

APPENDIX 

Longitudinal correlation of the beams 

Let us consider the quantity 

s h 

a= ~ (D*(so, sh)Do(so, ~/)~o*(So, 7/))d~/. (A1) 
0 

We take its derivative with respect to s h applying 
the same method as in the text: 

Oa 
- (D*~p*Do) 

aSh 

$h 

- i x  ~ (D*o (So, Sh)Do(so, rl))g(sh - ~l) d~7 
0 

= ix[ B ' -  2A'] (A2) 

since (Dh* ~* Do) = ix[ B ' -  A']. 

We can also expand (A1) as 
Sh Sh 

a = i x  ~ drl ~ d~(O*(so, sh)Oh(~, r / ) )g(So-s  c) 
0 0 

s h S h 

- i x  ~ dr/ ~ d r/ '( Do* ( So , rl')Oo(so, r / ) )g ( r / -  r/'). 
0 0 

(A3) 
The second term is 

Sh 

-2 ix  ~ dr/A'(so, r/). 
0 

If we replace (D*(so, Sh)Dh(~,  ~'1)) by (D*(so, rl) 
x Dh(~, rl)) in the first term, we get 

$h 

a= ix ~ dr/[B'(so, r / ) -2A ' ( so ,  r/)] (A4) 
0 

and Oa/as  h = i x[B ' -2A '] ,  a result similar to (A2). 
It is therefore legitimate to replace (D*(so, Sh)X 

Dh(~,  ~'l)) by (D*(so, ~'l)Dh(~, rl) ). Thus, we can con- 
sider that the longitudinal correlation of the ampli- 
tudes is large and only the transverse correlation plays 
an important role in the theory. This is related to the 
fact that the amplitudes change only their values due 
to scattering. 

] 

I I 
I 

I / I 
I 

I 
I 
I 

The amplitude correlation function between two 
parallel routes depends only on the distance between 
the two routes, and not on the particular position on 
each route. 
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